贝叶斯纳什均衡的概述
纳什均衡(Nash Equilibrium)和子博弈完美纳什均衡(Subgame perfect Nash equilibrium)所反映的博弈都包括了一个基本假设:即博弈的结构、博弈的规则、所有局中人的策略空间和支付函数(payoffs)都是共同知识(common knowledge)。满足这样一个假设的博弈称为“完全信息博弈”(games of complete information)。但在现实生活中这一假设往往得不到满足。在非合作博弈论中,局中人对博弈的结构以及其他局中人的特征并没有准确的知识的情况叫“不完全信息博弈”(games of incomplete information)。在1967年以前,博弈论专家对不完全信息博弈是束手无策的。 Harsanyi(1967—1968)的贡献解决了这个问题,填补了博弈论乃至经济学的一大空白,他也因此而获得了诺贝尔经济奖。John C.Harsanyi引入了一个虚拟的局中人——自然(nature)。
与一般的局中人不同,“自然”没有自己的支付和目标函数,即所有结果对它而言是无差异的。自然首先行动,决定局中人的特征。被选择的局中人知道自己的真实特征,而其他局中人并不清楚这个被选择的局中人的真实特征,仅知道各种可能特征的概率分布。另外,被选择的局中人也知道其他局中人心目中的这个分布函数,也就是说,分布函数是一种共同知识(common knowledge)。
John C.Harsanyi的这项工作被为“Harsanyi转移”(the Harsanyi transformation),通过这个转换,John C. Harsanyi把“不完全信息博弈”转换成“完全但不完善信息博弈”(complete but imperfect information)。这里“完全但不完美信息” 指的是,自然作出了它的选择,但其他局中人并不知道它人具体选择是什么,仅知道各种选择的概率分布。这样一来,不完全信息博弈就变得可以进行分析了。在这个基础上,John C.Harsanyi定义了贝叶斯纳什均衡(Bayesian-Nash equilibrium)。