核心思想
理性的投资者将选择并持有有效的投资组合,即那些在给定的风威廉?夏普险水平下使期望回报最大化的投资组合,或那些在给定期望回报率的水平上使风险最小化的投资组合。解释起来非常简单,他认为投资者在建立有风险的投资组合时,至少应该要求投资回报达到无风险投资的回报,或者更多。
计算公式
其中E(Rp):投资组合预期报酬率
Rf:无风险利率
σp:投资组合的标准差
目的是计算投资组合每承受一单位总风险,会产生多少的超额报酬。比率依据资产配置线(Capital Allocation Line,CAL)的观念而来,是市场上最常见的衡量比率。当投资组合内的资产皆为风险性资产时,适用夏普比率。夏普指数代表投资人每多承担一分风险,可以拿到几分报酬;若为正值,代表基金报酬率高过波动风险;若为负值,代表基金操作风险大过于报酬率。这样一来,每个投资组合都可以计算Sharpe Ratio,即投资回报与多冒风险的比例,这个比例越高,投资组合越佳。
举例而言,假如国债的回报是3%,而您的投资组合预期回报是15%,您的投资组合的标准偏差是6%,那么用15%-3%,可以得出12%(代表您超出无风险投资的回报),再用12%/6%=2,代表投资者风险每增长1%,换来的是2%的多余收益。
夏普理论告诉我们,投资时也要比较风险,尽可能用科学的方法以冒小风险来换大回报。所以说,投资者应该成熟起来,尽量避免一些不值得冒的风险。同时当您在投资时如缺乏投资经验与研究时间,可以让真正的专业人士(不是只会卖金融产品给你的SALES)来帮到您建立起适合自己的,可承受风险最小化的投资组合。这些投资组合可以通过Sharpe Ratio来衡量出风险和回报比例。
注意问题
夏普比率在运用中应该注意的问题夏普比率在计算上尽管非常简单,但在具体运用中仍需要对夏普比率的适用性加以注意:
1、用标准差对收益进行风险调整,其隐含的假设就是所考察的组合构成了投资者投资的全部。因此只有在考虑在众多的基金中选择购买某一只基金时,夏普比率才能够作为一项重要的依据;
2、使用标准差作为风险指标也被人们认为不很合适的。
3、夏普比率的有效性还依赖于可以以相同的无风险利率借贷的假设;
4、夏普比率没有基准点,因此其大小本身没有意义,只有在与其他组合的比较中才有价值;
5、夏普比率是线性的,但在有效前沿上,风险与收益之间的变换并不是线性的。因此,夏普指数在对标准差较大的基金的绩效衡量上存在偏误;
6、夏普比率未考虑组合之间的相关性,因此纯粹依据夏普值的大小构建组合存在很大问题;
7、夏普比率与其他很多指标一样,衡量的是基金的历史表现,因此并不能简单地依据基金的历史表现进行未来操作。
8、计算上,夏普指数同样存在一个稳定性问题:夏普指数的计算结果与时间跨度和收益计算的时间间隔的选取有关。
尽管夏普比率存在上述诸多限制和问题,但它仍以其计算上的简便性和不需要过多的假设条件而在实践中获得了广泛的运用。
基金较高的净值增长率可能是在承受较高风险的情况下取得的,因此仅仅根据净值增长率来评价基金的业绩表现并不全面,衡量基金表现必须兼顾收益和风险两个方面,夏普比率就是一个可以同时对收益与风险加以综合考虑的指标。夏普比率又被称为夏普指数,由诺贝尔奖获得者威廉·夏普于1966年最早提出,目前已成为国际上用以衡量基金绩效表现的最为常用的一个标准化指标。
具体作用
夏普比率的计算非常简单,用基金净值增长率的平均值减无风险利率再除以基金净值增长率的标准差就可以得到基金的夏普比率。它反映了单位风险基金净值增长率超过无风险收益率的程度。如果夏普比率为正值,说明在衡量期内基金的平均净值增长率超过了无风险利率,在以同期银行存款利率作为无风险利率的情况下,说明投资基金比银行存款要好。夏普比率越大,说明基金的单位风险所获得的风险回报越高。夏普比率为负时,按大小排序没有意义。
夏普比率以资本市场线作为评价基准,对投资绩效作出评估。
理论基础
夏普比率的大小对基金表现加以排序的理论基础在于,假设投资者可以以无风险利率进行借贷,这样,通过确定适当的融资比例,高夏普比率的基金总是能够在同等风险的情况下获得比低夏普比率的基金高的投资收益。例如,假设有两个基金A和B,A基金的年平均净值增长率为20%,标准差为10%,B基金的年平均净值增长率为15%,标准差为5%,年平均无风险利率为5%,那么,基金A和基金B的夏普比率分别为1.5和2,依据夏普比率基金B的风险调整收益要好于基金A。为了更清楚地对此加以解释,可以以无风险利率的水平,融入等量的资金(融资比例为1:1),投资于B,那么,B的标准差将会扩大1倍,达到与A相同的水平,但这时B的净值增长率则等于25%(即2*15%-5%)则要大于A基金。使用月夏普比率及年夏普比率的情况较为常见。